

#### APPLICATIONS OF RISK INFORMED FIRE PROTECTION

FRANCISCO JOGLAR | January 2021

# Introduction

#### Agenda

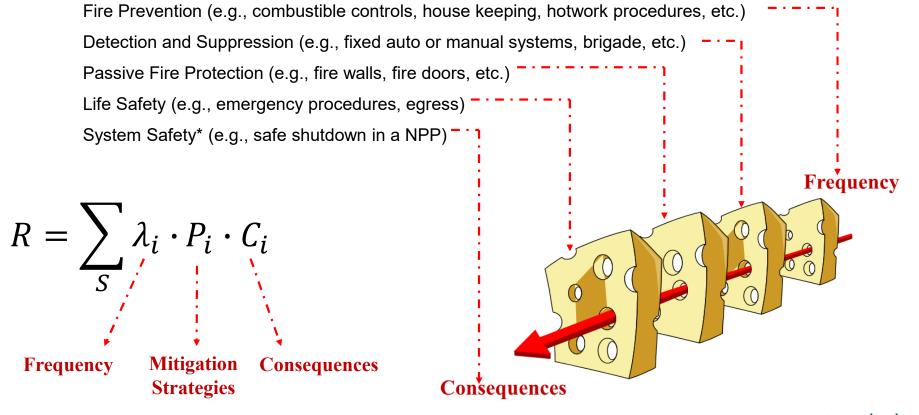
2

- + A brief technical overview of risk and fire risk (10 min)
- + Recent advances in Fire Risk Technology (5 min)
- + Ongoing SFPE activities on Fire Risk Assessment (5 min)
- + Examples of Risk Informed Applications (30 min)

### Introduction

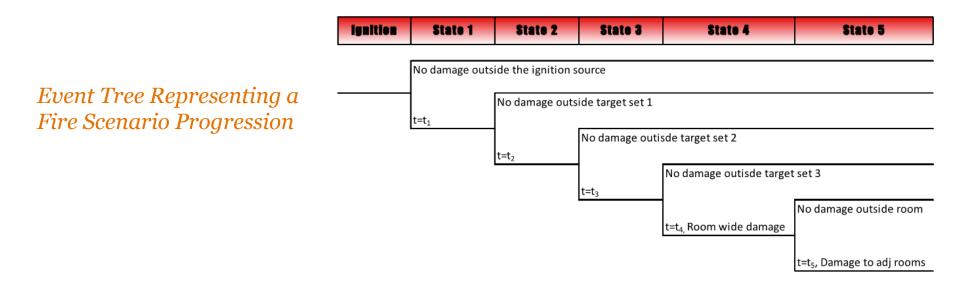
#### What is Fire Risk

Quantitative or qualitative measure of fire incident loss potential in terms of both the event likelihood and aggregate consequences.



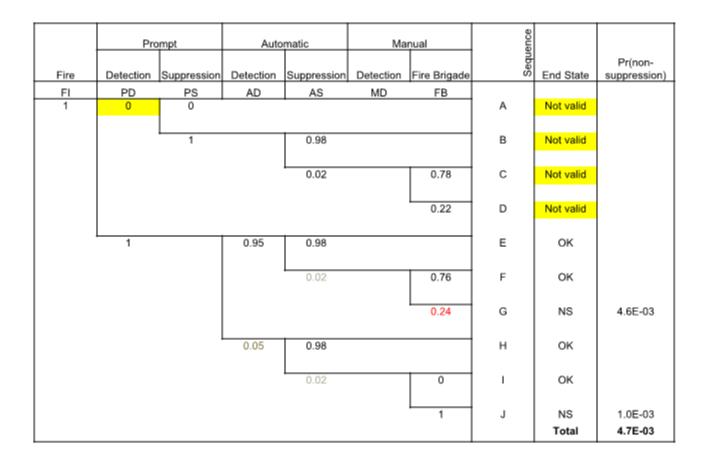

| Scenario              | Frequency                    | Consequences   | Risk                    |
|-----------------------|------------------------------|----------------|-------------------------|
| Scenario 1            | $\lambda_1$                  | C <sub>1</sub> | $= \lambda_1 \cdot C_1$ |
| Scenario 2            | $\lambda_2$                  | C <sub>2</sub> | $= \lambda_2 \cdot C_2$ |
| Scenario 3            | $\lambda_3$                  | C <sub>3</sub> | $= \lambda_3 \cdot C_3$ |
| Scenario 4            | $\lambda_4$                  | C <sub>4</sub> | $= \lambda_4 \cdot C_4$ |
| The total risk is the | $= \sum \lambda_i \cdot C_i$ |                |                         |

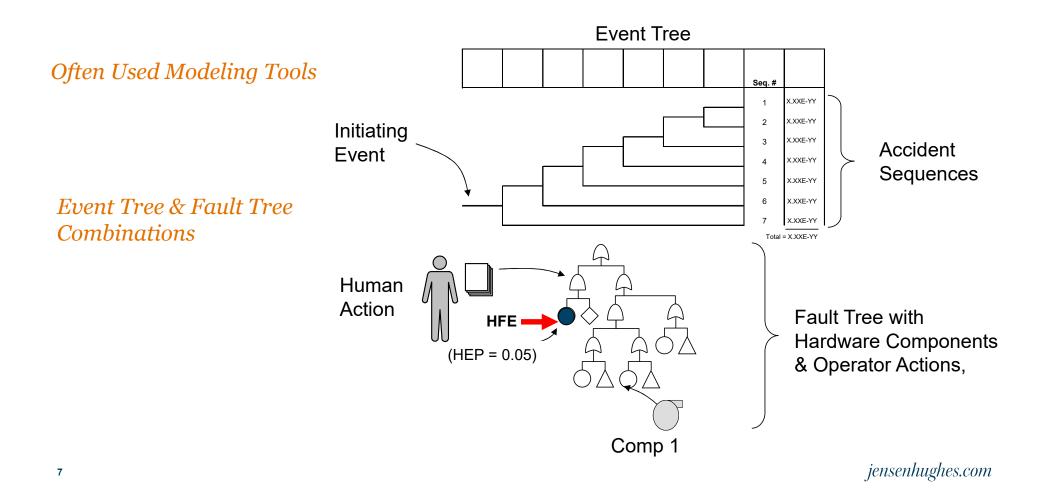
About fire scenarios:


- 1. Fire scenarios are the building blocks of a fire risk model. How many scenarios? Which scenarios?
- 2. Is a set of elements characterizing a fire event: *Ignition Source, Intervening combustibles, Detection and suppression, Consequences*

#### We are interested in modeling the key elements of a fire protection program

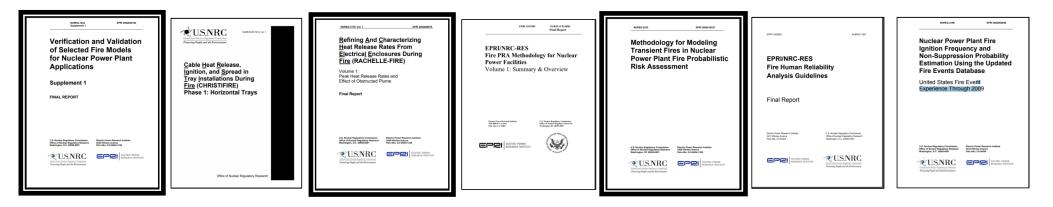



#### Often Used Modeling Tools


- 1. Event tree: Represents the "accident sequence" by modeling the chronology of the event
- 2. Fault tree: Used when modeling systems and subsystems



Often Used Modeling Tools


Event Tree Representing Detection/Suppression Strategy





# Fire Risk Assessment Research in the Nuclear Industry (2000-2020)

#### Research and Practical Information for Applications In and Out of the Nuclear Industry



- NUREG/CR-6850 and Supp 1: Full Fire PRA methodology. Implemented in almost all NPP in US
- NUREG-1824, Supp 1: Verification and validation for fire models (FDS, CFAST and Eng Calcs)
- NUREG-2178, Vol 1 & 2: Heat release rates for electrical cabinets based on recent testing and additional modeling guidance
- NUREG-2233: Heat release rates for realistic transient combustibles based on recent testing

- NUREG/CR-7010: Guidance on modeling cable fires
- NUREG-2169: Fire ignition frequencies for typical ignition sources
- NUREG-1921: Fire human reliability analysis
- NUREG-7150: Electrical short circuit probabilities
- And there is more!

jensenhughes.com

8

### **Ongoing SFPE Activities**

- In Progress: SFPE Engineering Guide on Fire Risk Assessment (2<sup>nd</sup> Edition)
  - Major update from the 1<sup>st</sup> Edition
  - Currently resolving public comments
  - Quantitative & Qualitative examples consistent with NFPA 551 (Guide for the Evaluation of Fire Risk Assessments)
- In Progress: Next edition of the SFPE Handbook
  - Updated structure and information on fire risk assessment
  - Section on fundamentals and theory
  - Section on applications (e.g., transportation, nuclear power plants, etc.)

# **Applications: Nuclear Power Plants**

- Almost all of the commercial nuclear power plants have completed Fire PRAs
- Resolved a number of non compliances in "older facilities" that were not designed for "new" regulations. It is noted that this was a very expensive effort.
- Fire PRAs are currently used in risk informed applications in efforts to reduce operating cost

$$CDF = \sum_{i} \lambda_{i} \cdot SF_{i} \cdot P_{NS-i} \cdot P_{BF} \cdot CCDP_{i}$$

- $\lambda$  is the ignition source frequency
- SF is the severity factor

10

- The probability of a fire severe enough to generate damage outside the ignition source
- P<sub>NS</sub> is the non suppression probability
  - The probability that suppression activities limit the fire to a predefined damage state
- P<sub>BF</sub> is the barrier failure probability
- CCDP is the conditional core damage probability

# **Applications: Aircraft Hangars**



Ignite Large Fuel Spill

### Applications: Batter Energy Storage Systems (BESS)

- On April 19, 2019, a BESS unit owned experienced a thermal runaway event. The facility was equipped with a clean agent suppression system similar to that found at several BESS sites.
- Venting, Water based, Clean Agents

| Thermal Runaway<br>Begins | Clean Agent System<br>Actuates | Sprinklers Activate | Hydrogen Vents to<br>Atmosphere | Fire Department Takes<br>Mitigating Action |
|---------------------------|--------------------------------|---------------------|---------------------------------|--------------------------------------------|
|                           | ¥                              | *                   | <b>*</b>                        | 4                                          |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |
|                           |                                |                     |                                 |                                            |

# Applications: NAVY

- Risk tools are useful to informed:
  - Operational facilities with limited possibilities on fire protection systems that can be installed an operated
  - Design of new facilities
  - Assist in highlighting importance of fire prevention and manual suppression strategies and training

| Ignition | Prompt<br>Detection | Prompt<br>Supp | Team<br>Detection | Team<br>Supp | Fire<br>Brigade    | Sequence | Outcome                   |
|----------|---------------------|----------------|-------------------|--------------|--------------------|----------|---------------------------|
|          |                     |                |                   |              |                    | 1        | Suppression successful    |
|          | Success             |                |                   |              |                    | 2        | Suppression successful    |
|          |                     |                |                   |              |                    | 3        | Suppression successful    |
|          |                     |                |                   |              |                    | 4        | Suppression failure       |
|          |                     |                |                   |              |                    | 5        | Suppression successful    |
|          | Failure             |                |                   |              | _                  | 6        | Suppression successful    |
|          |                     |                |                   |              |                    | 7        | Suppression failure       |
|          |                     |                |                   |              | Probability of 0   | 8        | Fire not detected         |
|          |                     |                |                   |              | Probability of 1.0 | 9        | Suppression failure       |
|          |                     |                |                   |              |                    | Prob:    | Sum(Supp failure branches |

### Some Concluding Remarks

- Hazard analysis VS Risk analysis
- Significant research that may be useful outside risk has been conducted over the last 20 years
- Design VS Built facilities
- The role of the AHJ and code compliance
- The importance of the accident sequence
- Updated SFPE Guide on Fire Risk Assessment coming up!